Titre : | Numerical optimization |
Auteurs : | Jorge Nocedal, Auteur ; Stephen J. Wright, Auteur |
Type de document : | texte imprimé |
Mention d'édition : | 2nd edition |
Editeur : | Berlin : Springer, 2006 |
Collection : | Springer Series in Operations Research and Financial Engineering |
ISBN/ISSN/EAN : | 978-0-387-30303-1 |
Format : | 1 vol. 664 p. / ill., couv. ill. / 24 cm |
Note générale : | Réference; Index. |
Langues: | Anglais |
Mots-clés: | Mathématique ; Numerical ; optimization |
Résumé : |
Numerical Optimization presents a comprehensive and up-to-date description of the most effective methods in continuous optimization. It responds to the growing interest in optimization in engineering, science, and business by focusing on the methods that are best suited to practical problems. For this new edition the book has been thoroughly updated throughout. There are new chapters on nonlinear interior methods and derivative-free methods for optimization, both of which are used widely in practice and the focus of much current research. Because of the emphasis on practical methods, as well as the extensive illustrations and exercises, the book is accessible to a wide audience. It can be used as a graduate text in engineering, operations research, mathematics, computer science, and business. It also serves as a handbook for researchers and practitioners in the field. The authors have strived to produce a text that is pleasant to read, informative, and rigorous - one that reveals both the beautiful nature of the discipline and its practical side. Written for: Graduate students, researchers, practitioners |
Note de contenu : |
Table Des Matiéres: 1. Fundamentals of Unconstrained Optimization 2. Line Search Methods 3. Trust-Region Methods 4. Conjugate Gradient Methods 5. Quasi- Newton Methods 6. Large-Scale Unconstrained Optimization 7. Calculating Derivatives 8. Derivative-Free Optimization 9. Least-Squares Problems 10. Nonlinear Equations 11. Theory of Constrained Optimization 12. Linear Programming: The Simplex Method 13. Linear Programming: Interior-Point Methods 14. Fundamentals of Algorithms for Nonlinear Constrained Optimization 15. Quadratic Programming 16. Penalty and Augmented Lagrangian Methods 17. Sequential Quadratic Programming 18. Interior-Point Methods for Nonlinear Programming 19. Background Material 20. Regularization Procedure |
Exemplaires (5)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
SC017481 | MA03705 | Livre | Fonds propre-bibliotheque centrale | mathématique/ رياضيات | Libre accès Disponible |
SC017482 | MA03706 | Livre | Fonds propre-bibliotheque centrale | mathématique/ رياضيات | Libre accès Disponible |
SC017483 | MA03707 | Livre | Fonds propre-bibliotheque centrale | mathématique/ رياضيات | Libre accès Disponible |
SC017484 | MA03708 | Livre | Fonds propre-bibliotheque centrale | mathématique/ رياضيات | Libre accès Disponible |
SC017485 | MA03709 | Livre | Fonds propre-bibliotheque centrale | mathématique/ رياضيات | Libre accès Disponible |